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Introduction 
 

Plant viruses have been evolved with massive 

potential of utilizing and regulating host cells to 

cause infection. They need host machinery for their 

replication, transcription and movement (Czosnek et 

al., 2013). During pathogen invasion, plants have 

developed various defense systems (Kachroo et al., 

2006). Host-Virus specific interactions determine 

the severity of infection. Begomovirus (Family 

Geminiviridae) causes severe threat to plants and 

major economic loss in tropical, sub-tropical and 

temperate regions. Geographical range of this genus 

increases rapidly and spread all over the world. 

According to International Committee on Taxonomy 

of Viruses (ICTV), Geminiviridae family is 

classified into nine genera viz. Becurtovirus, 

Begomovirus, Capulavirus, Curtovirus, Eragovirus, 

Grablovirus, Mastrevirus, Topocuvirus and 

Turncutovirus (Boulton, 2005). Among the nine 
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Begomoviruses are considered as the destructive plant virus genus. During plant-

virus interactions, begomovirus alters several cellular and physiological pathways 

by changing the gene expression. To understand these interactions with host plants, 

transcriptomic methods are adopted by many researchers. Significant changes in the 

expression of transcripts are found to be associated with biochemical pathways. 

Viral infection begins a complex interaction between the virus and the host. 

Unravelling these interactions can be helpful in the development of effective 

strategies for the virus control. In recent years, RNA sequencing and microarray 

studies have been applied extensively to know the response of plant hosts to viral 

infection. We aimed to identify important differentially expressed genes in host 

plants under begomovirus infection. In this present review, we focused on 

begomovirus-plat interactions with the help of transcriptomic analysis which will be 

helpful for scientific community to better understand the mechanisms of host 

against begomovirus species. 
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genera, Begomovirus is the largest plant virus genus 

and has 445 species according to ICTV 2020 report. 

It is known to infect mostly dicotyledonous plants. 

The transmission of the virus is mediated by 

whitefly (Bemisia tabaci) vector (Morales and 

Jones, 2004; Seal et al., 2007). It is considered as 

the causal agent of destructive diseases like leaf curl 

in chilli (Kumar et al., 2011), mosaic of cassava 

(Mittal et al., 2008), cotton (Monga et al., 2009), 

okra (Sheikh et al., 2013), potato (Kumar et al., 

2021), tomato (Kumar et al., 2008), zucchini, beans 

(Kumar et al., 2009; Zaim et al., 2011), pulses (Raj 

et al., 2005a), cucurbits (Guzman et al., 2000; 

Brown et al., 2001; Dasgupta et al., 2003), 

flowering plants (Kumar et al., 2010), chlorosis in 

Cordyline fruticosa (Lager et al., 2022) and etc. 

Their genome is made up of either DNA-A 

component (monopartite) or both DNA-A or DNA-

B (bipartite), covalently closed circular (ccc) single 

stranded DNA. The genome size is approximately 

2.6-2.8kb in size and encapsidated in geminate 

quasi-isometric virion particles. The component 

DNA-A has six open reading frames (ORFs), four in 

the complementary sense (AC1, AC2, AC3 and 

AC4) and two in the virion sense (AV1 and AV2). 

The DNA-B component has two ORFs, the virion-

sense BV1 and complementary-sense BC1. The 

nucleotide segment (~200 bp) of the intergenic 

region (IR), designated the common region (CR). 

The CR region contains an origin of replication 

(ori), including a stem-loop structure containing the 

invariant nonanucleotide ‘TAATATTAC’ sequence, 

this sequence is used for the cleavage and for viral 

DNA replication. The monopartite begomoviruses 

have the complementary-sense C1, C2, C3 and 

C4genes and the virion-sense V1and V2 genes.  

 

Monopartite and some bipartite begomovirus 

infection are usually associated with circular ssDNA 

satellites, referred to as alpha-satellite and beta-

satellite. It depends on the helper virus for 

encapsidation and systemic infection. Alpha-satellite 

encodes a Rep gene and is replicated autonomously 

in host plant cells (Saunders and Stanley, 1999). 

Beta-satellite encodes a βC1 protein, dependent on 

the helper virus for replication (Cui et al., 2005) and 

plays an important role in the development of 

symptoms of their helper viruses (Jyothsna et al., 

2013; Kumar et al., 2008). In last few years, a large 

number of begomoviruses have been reported all 

over the world, attacking fibre crops, vegetables, 

root crops, pulses and legumes (Sharma et al., 

2021). 

 

Importance 

 

The invention and development of new technology 

creates new opportunities to improve the knowledge 

regarding virus-host interactions. The development 

of genomic technologies is now useful and 

providing virus-host interactions. Now virology is 

not restricted to examining the detection of viruses, 

molecular characterization of the virus, their 

replication in host plant and in the vector. Now-a-

days gene expression studies which are based on the 

transcriptome and proteome level is helpful and 

tremendously potential.  

 

Purpose of this study 

 

Transcriptomic studies have been used tremendously 

to unravel the host response to virus infection (Babu 

et al., 2008). In this study, we have discussed for the 

first time begomovirus and host plant interactions. 

Our study highlighted the differential expression of 

several genes involved in defense, DNA 

organization, replication transcription, translation 

process, resistance response against begomovirus. 

The invention and development of new technology 

creates new opportunities to improve the knowledge 

regarding virus-host interactions.  

 

Background and current research 

 

To study gene expression, quality of genome greatly 

influences its usefulness. The whole transcriptome 

study began in the early 1990s. There are two main 

technologies in the field of transcriptomes and are 

microarray and RNA sequencing. It gives 

information of how genes are regulated and reveals 

details of an organism`s biology by measuring the 

expression of an organism`s genes in different 
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tissues, conditions and time. It gives valuable 

information by using less than 1μg RNA samples. 

RNA-Sequencing experiments generate a large 

volume of raw sequence reads and are required to 

process to yield useful information. For data 

analysis, a set of bioinformatics software tools are 

required. The processing of data is divided into four 

stages: quality control, alignment, quantification and 

differential expression (Van Verk et al., 2013). 

Mostly RNA-Seq programs run from a command-

line interface, either in a Unix environment or within 

R/Bioconductor statistical environment (Huber et 

al., 2015). The transcript abundance for each of the 

probe sequence is determined by fluorescent 

intensity (Barbulovic-Nad et al., 2006). Microarray 

requires some prior knowledge of the organism of 

interest (annotated genome sequence/library of 

expressed sequence tags).  

 

RNA extraction is essential to perform all 

transcriptome methods. It requires the lysis of cells 

or tissues, disruption of RNase, lysis of 

macromolecules and nucleotides, extraction of RNA 

from other undesired molecules such as DNA (using 

DNase) and elution of RNA from a solid matrix and 

precipitation from solution. For transcriptome 

analysis, mRNA is required so it is necessary to 

remove ribosomal RNA (rRNA). To enrich mRNA, 

poly-A affinity methods or depletion of ribosomal 

RNA (total RNA contains 98% rRNA) using 

sequence-specific probes are used. Expressed 

sequence tags (ESTs) are short nucleotides (200-800 

bases length) of mRNA sequences derived from 

cDNA libraries. With the help of reverse 

transcriptase enzyme cDNA is synthesized from 

mRNA. The oligonucleotide probes are used for the 

separation of mRNA molecules which bind their 

poly-A tails. Sometimes ribo-depletion can be used 

to specifically remove abundant. The cDNA copies 

of transcripts are amplified by PCR for the 

enrichment of fragments that contain the expected 

5A' and 3 A' adapter sequences. 

 

Initially sequencing based transcriptomic method, 

Serial analysis of gene expression (SAGE) was 

developed in 1995 (Pietu et al., 1999). It is based on 

Sanger sequencing of concatenated random 

transcript fragments. With the help of reverse 

transcriptase enzyme, cDNA is constructed from 

RNA. The cDNA is then digested into 11 bp tag 

fragments by using restriction enzymes. These 

cDNA tags are concatenated head-to-tail into 

>500bp long stands and sequenced. The tags are 

then aligned to identify their corresponding genes if 

the reference genome is available. The tags can be 

directly used as diagnostic markers if the reference 

genome is unavailable. The modify method of 

SAGE called Cap analysis of gene expression 

(CAGE) which sequences tags from the 5` end of an 

mRNA transcript (Shiraki et al., 2003). Limitation 

of these methods is sample preparation, data 

analysis and labour intensive. Another technique 

called Massively parallel signature sequencing 

(MPSS) based on generating 16-20 bp sequences 

through a complex series of hybridization was 

developed (Brenner et al., 2000). In the mid-1990s 

and 2000s microarray and RNA sequencing methods 

were developed. Microarray consists of short 

nucleotide oligomers (probes) which are arrayed on 

a solid substrate such as glass. The gene expression 

in organisms can be detected after fluorescent 

labelling and hybridization to the corresponding 

probes on the microarray. The transcriptome 

abundance is determined by checking the 

fluorescence intensity at each probe location on the 

array. Prior information of the organism of interest 

is required. Its sensitivity is 10
-
³ limited by 

fluorescence detection. Main drawback of 

microarray analysis includes poor quantification, 

required prior knowledge of sequence and cross-

hybridization artifacts.  

 

Due to these problems transcriptomics advanced to 

RNA-Seq methods. It requires cDNA libraries and 

then sequenced into a computer-readable format. 

Recently many sequencing technologies developed 

for cDNA sequencing such as Illumina, Thermo 

Fisher, BGI/MGI, PacBio and Oxford Nanopore 

Technologies (Oikonomopoulos et al., 2020). After 

cDNA sequencing, tools like Sailfish, RSEM and 

BitSeq13 quantify transcription levels. The software 

FAST QC and FaQCs are used for sequence quality 
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analysis and removed the abnormalities identified in 

the sequences (de Sena and Smith, 2019). To read 

raw sequence reads De novo and gene guided 

methods are used. When the genome is incomplete 

or unknown then De novo method is used because it 

does not require the reference genome to reconstruct 

transcriptome. Assemblers are used- Bridger (Chang 

et al., 2015), rna SPAdes (Bushmanova et al., 2019) 

and Trinity (Grabherr et al., 2011). Alternatively the 

genome guided method which is based on the DNA 

alignment method with the additional complexity of 

aligning reads that cover non-continuous portions of 

the reference genome. Software tools include 

Bowtie, STAR, Subread, HISAT2 and GMAP 

(Langmead et al., 2009; Dobin et al., 2013; Liao et 

al., 2013; Kim et al., 2015; Wu and Watanabe, 

2005). Gene expression is measured by quantifying 

the levels of the gene product and exon. Gene and 

exon count expression can be quantified using 

contigs or reference transcript annotations. Tools 

that determine read counts from aligned RNA-Seq 

data are HTSeq (Anders et al., 2015), Rcount 

(Schmid and Grossniklaus, 2015), Cuffquant and 

FIXSEQ (Hashimoto et al., 2014). For alignment 

free counts Sailfish (Patro et al., 2014) and Kallisto 

(Bray et al., 2016) tools are used. To find the 

differences between gene expression of two or more 

states of the conditions (healthy and infected plant), 

Differential gene expression (DEG) is measured 

(up-regulation/down-regulation). Many tools are 

used to study DEGs that find the up/down-regulation 

of the genes between two or more states. Commonly 

used tools are DESeq (Anders and Huber, 2010) and 

voom+limma (Ritchie et al., 2015). Transcriptomic 

analysis is validated by performing quantitative PCR 

(qPCR). Gene expression measurement by using 

qPCR is similar to result obtained from RNA-Seq. 

For obtaining higher-level biological understanding 

of the results, gene set enrichment analysis is used. 

Gene set enrichment determines the overlap between 

two gene sets is statistically significant and are 

determined by databases or pathways (Gene 

Ontology, KEGG, Human Phenotype Ontology) or 

from complementary analyses in the same data (like 

co-expression networks). This review collates the 

research work performed by many researchers to 

unravel their interactions with the host plants. 

Begomovirus-host plant interaction studies 

described below: 

 

Chilli leaf curl virus 

 

Virus invasion into the host plant causes many 

physiological and cellular changing the gene 

expression (Sahu et al., 2010). The study Chilli leaf 

curl virus (ChiLCV) disease infection and their 

interactions with host plant (Kushwaha et al., 2015). 

ChiLCV is a monopartite begomovirus and causes 

major destruction of chilli crops (Kumar et al., 

2006). They used ChiLCV chilli variety Punjab Lal 

to study the differential expression of several genes. 

They hypothesized that the resistance character of 

chilli variety Punjab Lal against ChiLCV might have 

some correlation with the upregulation in the 

expression of genes which are essential for the virus 

replication, transcription and movement at an early 

phase of infection. The host plant started expressing 

defense-related genes when the level of virus titer 

reached to threshold in the host infected plant cells. 

Proteins that were involved in ChiLCV infected 

resistant plants were played role in diverse cellular 

and physiological pathways. The comparative gene 

expression studies in resistant and susceptible plants 

showed up-regulation of defense-related genes upon 

infection. Nucleoside-binding site Leucine-rich 

repeat (NBS-LRR) is a conserved domain present in 

proteins involved in conferring resistance against 

pathogens (Meyers et al., 2003). NBS-LRR genes 

actively involved in the resistant plants and >5-fold 

upregulation of genes in resistant chilli plants as 

compared to susceptible plants. Polyphenol oxidase 

(PPO) is a tetrameric copper containing protein 

which catalyses the o-hydroxylation of phenols 

produced during the oxidative burst during pathogen 

attack. PPO acts as a scavenger and protects the cell 

from reactive oxygen species. During infection in 

resistant chilli var. Punjab Lal plants activates the 

basal defense response. Their study also revealed the 

upregulation of an ATP/ADP transporter in resistant 

plants. These transporters catalyse the highly 

specific transport of ATP across membrane such as 

chloroplast and mitochondria in an exchange mode 
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with ADP. Thionin has antimicrobial protein 

properties and provide a basal defense role in 

resistant chilli plants. The enhanced level of histone 

H1 transcripts found in the plants and these host 

proteins are required for the formation of 

minichromosomes, replication, transcription and 

symptom development. 

 

Cotton leaf curl disease 

 

Cotton leaf curl disease (CLCuD) causes huge loss 

to cotton fields. Against CLCuD, the diploid species 

of Gossypium arboreum is a natural host resistant 

than susceptible tetraploid Gossypium hirsutum. 

Mild symptoms (only a few leaves developed 

symptoms) were observed in G. arboretum having 

scion of G. hirsutum (infected CLCuD). The study 

revealed that the changes in gene expression of 

resistant variety in response to disease. 

Transcriptomic analysis found 563 DEGs were up-

regulated and 499 DEGs were down-regulated (total 

1062 DEGs). To validate transcriptome data, 17 

DEGs that might confer disease resistance were 

selected and qPCR primers designed and result 

shown qPCR data strongly correlated with the 

expression data of RNA-Seq. Some transporter 

genes such as a boron transporter gene (helps to 

induce necrosis or modulate R gene mediated 

defense response) were up-regulated while a 

SWEET 17 gene was down-regulated in 

asymptomatic plants of G. arboreum. The up-

regulation of the boron transporter gene in G. 

arboretum indicates the protection of the plant from 

boron toxicity. SWEETs are bidirectional vacuolar 

fructose transporters (maintained sugar homeostasis) 

and play an important role in plant-pathogen 

interaction. The downregulation of G. arboreum 

SWEET transporter suggested its involvement in 

reduced pathogen growth and disease resistance. 

Several transcription factors play a key in resistant 

in G. arboretum plants such as RADIALS, 

REVEILLE, bHLH, oxidative stress related genes, 

Ethylene response factor (ERF), R-genes, protein 

kinases etc. During infestation of CLCuD in G. 

arboreum plants phytohormones such as auxin, 

cytokinin, abscisic acid and brassinosteroid related 

genes were up-regulated while ethylene and salicylic 

acid phytohormones were down-regulated (Naqvi et 

al., 2017). 

 

Tobacco curly shoot virus 

 

Study on Nicotiana benthamiana plants infected 

with Tobacco curly shoot virus (TbCSV, 

monopartite begomovirus) and Tobacco curly shoot 

beta-satellite (TbCSB) using RNA sequencing 

method. Transcriptomic data showed 4081 DEGs 

were identified in TbCSB samples and 3196 DEGs 

were identified in TbCSV plants. KEGG analysis 

revealed that DEGs of TbCSB samples involved in 

carbon metabolism, glyoxylate, photosynthesis, 

carbon fixation and dicarboxylate metabolism, 

porphyrin and chlorophyll metabolism, DNA 

replication, pentose phosphate pathway and nitrogen 

metabolism. The DEGs of TbCSV samples involved 

in ribosome, glyoxylate and dicarboxylate 

metabolism, DNA replication, circadian rhythm-

plant, photosynthesis-antenna proteins and nitrogen 

metabolism. Metabolic pathway was the major 

pathway containing the large number of DEGs in 

both TbCSV and TbCSB infected plants. 

Pathogenesis related (PR) eight genes were 

significantly up-regulated and 44 Leucine-rich 

repeat receptor-like protein kinases (LRR-RLKs) 

genes were significantly differentially expressed in 

TbCSV or in TbCSB treatment. The biosynthesis 

and signal transduction pathway of BR and JA were 

significantly changed (Li et al., 2018). 

 

Pepper golden mosaic virus 

 

Pepper golden mosaic virus (PepGMV) is a bipartite 

begomovirus. Differential expression analysis of 

healthy, symptomatic and recovered pepper leaves 

was studied. Transcriptomic analysis revealed that 

the recovery process of plant which was infected by 

pepper-PepGMV had been associated with 

transcriptional and post-transcriptional gene 

silencing. Using Roche/454 pyrosequencing method 

for deep transcriptome sequencing technology (used 

for the identification of transcripts and transcript 

variation in plant-pathogen interaction), a total of 



Int.J.Curr.Microbiol.App.Sci (2023) 12(08): 196-206 

201 

 

309 (168 up and 141 down-regulated) DEGs were 

identified which showed major differences in up and 

down-regulated mechanism. Out of 309 DEGs, 246 

have a known function which was associated with 

biological and metabolic pathways. Gene Ontology 

(GO) analysis revealed catabolic process related 

genes and photosynthetic process related genes were 

down-regulated in both symptomatic and recovered 

leaves. RRP1 gene was found in recovered tissues 

(role in plant defense mechanism upon virus 

infection). The novel genes such as Pepper-RRP1 

and histone proteins, were identified which may 

have a role in plant defense (Góngora-Castillo et al., 

2012). 

 

PepGMV and Tomato chino La Paz virus 

(ToChLPV) 

 

RNA interference (RNAi) is a tool that is used to 

induce pathogen-derived resistance against 

begomoviral disease in plants. Its reliability and 

specificity serve as a guide and down-regulate gene 

expression and viral DNA accumulation. Genes of 

begomovirus AC1 (replication gene), AV1 (coat 

protein) and the non-coding intergenic region (IR) 

entire, partial or mutated sequences used to develop 

strategies by applying RNAi. Two widely 

distributed begomovirus-PepGMV and ToChLPV 

were used to develop strategies against them. The 

AC1-IR-AV1 region of PepGMV and ToChLPV 

were used to construct RNAi using microarray 

hybridization technique. Evidences proved that both 

the constructs were highly efficient for the 

suppression of multiplication of viral genome, cross 

protection and important for the control of PepGMV 

and other begomovirus diseases (Medina-Hernández 

et al., 2013). 

 

Tomato yellow leaf curl virus (TYLCV) 

 

Previous studies showed that five major loci (Ty-1, 

Ty-2, Ty-3, Ty-4, Ty-5) present in wild type tomato 

plants which are resistant to TYLCV infection. 

DEGs levels in two tomato lines- resistant(R) and 

susceptible (S) tested which contained 209 DEGs in 

R-line and 807 DEGs in S-lines. R-line plants 

showed higher proportion of up-regulated DEGs 

than S-line with a difference of 49.2%. To study 

different biological, cellular and metabolic 

processes, GO analysis was performed. For this 

analysis, blast2go software was used and annotated 

67.46% and 63.89% of DEGs in the R and S-lines 

respectively. Differential expressed genes which are 

involved in the cellular process were higher in the S-

line (30.5%) than that in the S-line (23.04%). Some 

genes were involved in the protein binding 

transcription factors activity were only found in R-

line while antioxidant, nucleic acid binding 

transcription factor activity were specific to the S-

line. Total 40 up-regulated annotated genes (out of 

122) were found involved in the defense mechanism 

related genes. Virus induced gene silencing (VIGS) 

treated R-plants showed no symptoms such as leaf 

curling and yellowing. This journal provides 

comprehensive knowledge about the molecular 

mechanism underlying the resistant (R) gene 

network (Chen et al., 2013). 

 

Another method, ionising radiation and has been 

used in diverse commercial areas such as food 

industry, plant breeding studies (Zhou et al., 2019). 

Neutron mutagenesis is a highly efficient method to 

develop deletion mutant populations in diverse 

species of plants. By using this method, phenotypic 

changes in plant characteristics such as seed 

germination rate, plant height, leaf number have 

been observed. Neutron irradiation interfere gene 

expression in plants. They examined tomato seed 

germination rate and RNA sequencing method to 

study transcriptome analysis against TYLCV 

infection. Neutron irradiated tomato mutants were 

resistant or tolerant to TYLCV infection as 

compared to wild type (WT) plants. Transcriptome 

analysis showed that the number of up-regulated 

nuclear genes were much higher than that of down-

regulated genes in all irradiated mutants as 

compared to the WT plants. Neutron irradiation of 

up-regulated nuclear gens involved in many 

biological processes and down-regulated genes were 

targeted to cellular organelles such as chloroplast 

and mitochondria. In this experiment, they set two 

different seed conditions (pre-soaked and dried 
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seeds) and two different irradiation intensities (30 

and 90 min) have been used for seed germination 

and transcriptome analysis. After neutron irradiation 

pre-soaked seeds showed lower germination rates as 

compared to dry seeds (due to the inhibition of seed 

germination). Neutron irradiated eight mutants (as 

compared to WT) showed higher number of SNPs 

(Single nucleotide polymorphisms). The study 

suggested that neutron irradiation strongly impacts 

RNA editing and insertion/deletion which might be 

correlated with the experiment of the corresponding 

genes. The Ts/Tv (transition/transversion) ratio 

values remain constant in all mutants but lower than 

that of the WT. The two different irradiation 

intensities showed that sample irradiated for 30 

minutes were higher than those in the sample 

irradiated for 90 minutes. Results based on this 

article suggested that higher intensity of irradiation 

could cause more effects in the experiment of host 

genes which might be required for infection. This 

article helps us to understand the application of 

neutron irradiation in plant-virus interaction. 

 

Future approaches 

 

A large number of begomoviruses have been 

reported worldwide. As is the case with much of 

science, new technology leads to new opportunities 

to improve the knowledge base regarding plant-virus 

interactions. Transcriptome analysis is an efficient 

method to understand how genomes are expressed 

and can be used without genomic reference. Many 

new technologies have developed to investigate and 

other omics technologies are giving an increasing 

integrated view of the complexities of cellular life. 

Plant-virus interactions comparing transcriptomes 

gives us huge knowledge to understand cellular 

changes in plants during infection.  

 

The development of new scientific approaches with 

existing methods will bring us to understand the 

interactions between them and will let us know the 

biological basis for many physiological functions, 

biochemical pathways, virus-vector interactions. In 

the future, research based on transcriptome data will 

promote the discovery of new functional genes, 

secondary metabolic pathways, and virus-host and 

virus-vector interactions. In this review, we 

discussed the molecular basis of begomovirus-host 

plant infection and will help us to develop the 

durable resistant strategies against begomovirus. 
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